值得关注的5个人工智能发展趋势

时间:2019-06-30 08:00:01 来源:爱旅游 当前位置:我以为终有一天 > 运势 > 手机阅读

018年,我们见证了基于机器学习和人工智能的平台、工具和应用的迅猛发展。这些技术不仅影响了软件和互联网行业,还影响了医疗、法律、制造、汽车和农业等其他垂直领域。


值得关注的5个人工智能发展趋势

我们将在2019年及以后继续看到机器学习和人工智能相关技术的进步,亚马逊(Amazon)、苹果(Apple)、Facebook、谷歌、IBM和微软(Microsoft)等公司都在投资于人工智能的研发,这将有利于生态系统拉近人工智能与消费者之间的距离。

以下是2019年需要注意的5个人工智能趋势:

1)AI的芯片的兴起

与其他软件不同,人工智能严重依赖与CPU互补的专门处理器。即使是最快和最先进的CPU也不能提高训练AI模型的速度。在进行推理时,该模型需要额外的硬件来执行复杂的数学计算,以加快目标检测和人脸识别等任务。

2019年,英特尔(Intel)、英伟达(NVIDIA)、AMD、ARM和高通(Qualcomm)等芯片制造商将推出专门的芯片,以加速支持人工智能的应用程序的执行。这些芯片将针对与计算机视觉、自然语言处理和语音识别相关的特定用例和场景进行优化。医疗和汽车行业的下一代应用程序将依赖这些芯片向最终用户提供智能。

2019年也将是亚马逊,微软,谷歌和Facebook等大型基础设施公司将增加基于现场可编程门阵列(FPGA)和专用集成电路(ASIC)的定制芯片投资的一年。这些芯片将针对基于AI和高性能计算(HPC)运行现代工作负载进行大量优化。其中一些芯片还将协助下一代数据库加速查询处理和预测分析。

早期指标 - 来自亚马逊的Nitro项目,来自Google的Cloud TPU,来自Microsoft的Project Brainwave,Intel Myriad X VPU

2)物联网与人工智能的边缘融合

2019年,人工智能与物联网在边缘计算层相遇。在公共云中培训的大多数模型将部署在边缘。

工业物联网是人工智能最重要的用例,能够对设备进行离群点检测、根本原因分析和预测维护。

对基于深度神经网络的先进ML模型进行优化,使其在边缘运行。它们将能够处理视频帧、语音合成、时间序列数据和由摄像机、麦克风和其他传感器等设备生成的非结构化数据。

物联网必将成为企业人工智能的最大推动力。Edge设备将配备基于FPGAs和asic的特殊AI芯片。

早期指标——支持AWS Greengrass的ML边缘推断,Azure物联网边缘AI工具包,谷歌云物联网边缘,雾角闪电边缘智能,TIBCO的Flogo项目。

3)神经网络之间的互操作性成为关键

开发神经网络模型的关键挑战之一在于选择正确的框架。数据科学家和开发人员必须从众多选择中选择合适的工具,包括Caffe2,PyTorch,Apache MXNet,Microsoft Cognitive Toolkit和TensorFlow。一旦模型在特定框架中进行了训练和评估,就很难将训练好的模型移植到另一个框架中。

神经网络工具包之间缺乏互操作性阻碍了AI的采用。为了应对这一挑战,AWS,Facebook和Microsoft合作构建了开放式神经网络交换(ONNX),这使得在多个框架中重用经过训练的神经网络模型成为可能。

在2019年,ONNX将成为该行业的重要技术。从研究人员到边缘设备制造商,生态系统的所有关键参与者都将依赖ONNX作为推理的标准运行时。

早期指标 - Windows 10附带ONNX运行时;英特尔的OpenVINO工具包支持ONNX。

4)自动化机器学习将得到突出

一个将从根本上改变基于ml的解决方案的趋势是AutoML。它将使业务分析人员和开发人员能够改进机器学习模型,这些模型可以处理复杂的场景,而无需经历培训ML模型的典型过程。

在处理自动化平台时,业务分析人员将重点放在业务问题上,而不是迷失在流程和工作流中。

AutoML非常适合于介于认知api和定制ML平台之间。它提供了正确的定制级别,而无需强迫开发人员经历复杂的工作流。与通常被认为是黑盒的认知api不同,AutoML提供了同样程度的灵活性,但是具有自定义数据和可移植性。

早期指标- DataRobot,谷歌云自动化,微软自定义认知api,亚马逊理解的自定义实体。

5) AI将通过AIOps实现DevOps的自动化

现代应用程序和基础设施正在生成用于索引、搜索和分析的日志数据。从硬件、操作系统、服务器软件和应用软件中获取的海量数据集可以进行聚合和关联,从而发现见解和模式。当机器学习模型应用于这些数据集时,IT操作从反应性转换为预测性。

当人工智能的力量应用于操作时,它将重新定义基础设施的管理方式。ML和AI在IT运营和DevOps中的应用将为组织提供情报。它将帮助ops团队进行精确和准确的根本原因分析。

2019年,AIOps将成为主流。公共云供应商和企业将受益于AI和DevOps的融合。

早期指标——Moogsoft AIOps、Amazon EC2预测伸缩、Azure VM弹性、Amazon S3智能分层

机器学习和人工智能将成为2019年的关键技术趋势。从业务应用到IT支持,人工智能将对行业产生重大影响。

上一篇鲜为人知的汽车小知识

下一篇《日照爱车汇汽车服务会所,年终会员答谢会》

运势本月排行

运势精选